a2 United States Patent

US009184979B2

(10) Patent No.: US 9,184,979 B2

Anderson et al. 45) Date of Patent: Nov. 10, 2015
(54) COMMUNICATION BETWEEN (56) References Cited
APPLICATION COMPONENTS
DISTRIBUTED AMONG DEVICES U.S. PATENT DOCUMENTS
. 5,881,268 A 3/1999 McDonald et al.
(71) Applicant: Amazon Technologies, Inc., Reno, NV 7,430,610 B2* 9/2008 Paceetal. ..cccocounenne. 709/233
(US) 7,574,601 B2* 8/2009 Jahromietal. . .. 713/168
7,603,716 B2* 10/2009 Franketal.cccce.. 726/25
2003/0018694 Al 1/2003 Chen et al.
(72) Inventors: David John Anderson, Seattle, WA 2008/0148231 Al* 6/2008 Weberccccocvrvivirnennnne 717/120
(US); Inga Jugurt, Newcastle, WA (US); 2010/0150120 Al* 6/2010 Schlichtetal. ... 370/338
Charles Drummond Swan, Seattle, WA OTHER PUBLICATIONS
(US) International Search Report dated Jun. 17, 2014 in corresponding
. International Application No. PCT/US14/12796 filed Jan. 23, 2014.
(73) Assignee: Amazon Technologies, Inc., Seattle, WA
(Us) * cited by examiner
)) o) Primary Examiner — Moustafa M Meky
(*) Notice: Subject. to any dlsclalmer,. the term of this Assistant Examiner — Sm 7. Islam
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Thomas Horstemeyer, LL.P
U.S.C. 154(b) by 273 days.
57 ABSTRACT
(21) Appl. No.: 13/750,342 Disclosed are various embodiments for facilitating commu-
’ nications between application components that are distrib-
_ uted among many devices across a network. This allows for
(22) Filed: Jan. 25,2013 the application to execute as if on one device even though the
application components are on many devices. A component
(65) Prior Publication Data interface is generated for the application components. The
US 2014/0214918 A1 Tul. 31. 2014 component interface intercepts communications sent from an
’ application component, locates the intended receiving appli-
cation component, and generates a component interface
(51) Int.CL packet with the location. The component interface packet is
GOG6F 15/16 (2006.01) then put into a network stream. The receiving component
HO4L 29/06 (2006.01) listens to the stream to obtain component interface packets
(52) US.CL that indicate the location of the device running the receiving
CPC v HO04L 29/06047 (2013.01) application component. The component interface decodes the
(58) TField of Classification Search component interface packets intended for components asso-
CPC oo HO4L 29/06047 ~ ciated with the component interface and sends communica-
USPC ittt 709/203 tions encoded in the packet to the application components.

See application file for complete search history.

120

N

20 Claims, 6 Drawing Sheets

334

Intercept communication from a first application component to a
second application component

337

v

Identify network location of a device associated with the second
application component

341

v

344

Generate component interface packet comprising the communication
and network location

v

e el e

Send component interface packet to the second application
component

U.S. Patent Nov. 10, 2015 Sheet 1 of 6 US 9,184,979 B2

100
Computing Environment 103
/”_\
v
Data Store 112
Application 121
PP - Application
Application Component 124 Distribution
. ¥ 7| System
Device 127 115
Performance Metric 131
Application 118
Performance Tolerance 134 Component
Component 1
Component Distribution Profile
137 Component
//
Network 120
1
109 119
Client . Client 108 T
106
Client N Component
Application
141 Component H
Display 144 Component
User
Interface ;
Display 151
147 play 151
User
I Interface
' 154
FIG.1 -
[] [

U.S. Patent

201

Nov. 10, 2015 Sheet 2 of 6

US 9,184,979 B2

154a

Photo Editor

Tags: | Nature |

/

119a

¥ Brightness | m—
-] Contrast —
s > TranSparenCy e jm—
N Blur] e

\ Sharpen —D—

@ ©

FIG. 2

U.S. Patent Nov. 10, 2015 Sheet 3 of 6 US 9,184,979 B2

115

301
304 Determine an initial distribution of application components among device(s)
307 Apply component interfaces to the application components
Distribute application components among device(s) across a network and
begin execution of the application components
311
Performance metric N
” violate tolerance?
314

L‘ Obtain current state of execution |
\\{ Determine new distribution of application components |

)

Update component interfaces for the application components based on the
new distribution

v

Migrate application components to devices based on the new distribution |

!

Update component distribution profile |<_

326\‘ Update components with the current state of execution |

327

U.S. Patent Nov. 10, 2015 Sheet 4 of 6 US 9,184,979 B2

120

N
334 C st >

A 4

Intercept communication from a first application component to a
second application component

337

\ 4

Identify network location of a device associated with the second
application component

e e

341

v
Generate component interface packet comprising the communication
and network location

344

v
Send component interface packet to the second application
component
A 4
End

FIG. 3B

U.S. Patent Nov. 10, 2015 Sheet 5 of 6 US 9,184,979 B2

120

364\

Obtain component interface packet from network

367
v

Extract device network location from the component interface packet

371

Device network location
indicate this device?

371

\ Extract and send payload from the component interface packet
to the application component

377

Execution complete? <

Y

FIG. 3C

U.S. Patent Nov. 10, 2015 Sheet 6 of 6 US 9,184,979 B2

Computing Environment 103
Computing Device(s) 400 h
Memory(ies) 406
Processor(s) —__ "= Application Distribution System
403 Data Store 115
112
A y
< v /‘ 409 X >

FIG. 4

US 9,184,979 B2

1
COMMUNICATION BETWEEN
APPLICATION COMPONENTS

DISTRIBUTED AMONG DEVICES

CROSS-REFERENCE TO RELATED
APPLICATION

This application is related to U.S. patent application Ser.
No. 13/750,218, filed on even date herewith, entitled “Distri-
bution of Application Components among Devices,” now
abandoned, and co-pending PCT Application No. PCT/
US14/12796, filed Jan. 23, 2014, entitled “Distribution of
Application Components among Devices.”

BACKGROUND

Applications are executed on devices. Applications may
use significant resources during execution. Resources may be
more optimally managed by distributing an application
among many devices. Distributing applications among many
devices may require developing a version of the application
for each of the devices to facilitate executing parts of the
application on different devices. Furthermore, it may be dif-
ficult to divide the application into components and execute
the components as if all are on the same device.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better under-
stood with reference to the following drawings. The compo-
nents in the drawings are not necessarily to scale, with
emphasis instead being placed upon clearly illustrating the
principles of the disclosure. Moreover, in the drawings, like
reference numerals designate corresponding parts throughout
the several views.

FIG. 1is a drawing of a networked environment according
to various embodiments of the present disclosure.

FIG. 2 is a drawing of an example of a user interface
rendered by a client in the networked environment of FIG. 1
according to various embodiments of the present disclosure.

FIGS. 3A-3C are flowcharts illustrating examples of func-
tionality implemented as portions of a component system and
a component wrapper system executed in a computing envi-
ronment in the networked environment of FIG. 1 according to
various embodiments of the present disclosure.

FIG. 4 is a schematic block diagram that provides one
example illustration of a computing environment employed
in the networked environment of FIG. 1 according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

Applications are executed on devices. For example, a game
may be played on a personal computer. Such an application
may comprise many application components. For instance,
the game may have input components, graphic components,
ranking components, score components, and many other
components that facilitate execution of the game on the com-
puter. According to various embodiments, these application
components are distributed among many devices for execu-
tion to more optimally execute the application. For example,
the input components may be executed on the computer, but
the other components may be distributed across a network to
a computing environment comprising many devices, such as
servers, for executing the application components on one or
more of those devices.

10

15

20

40

45

50

55

2

To optimally execute an application in devices, a system
may determine an optimal distribution of the application
components among a plurality of computing devices based on
certain metrics. For example, the system may distribute an
application component to a device that executes the applica-
tion component using the least amount of memory or the least
processor execution time. In spite of the distribution of appli-
cation components for execution, the application components
will still need to communicate with each other as if they are all
executed on the same device. To facilitate this, the system
may wrap components with a component interface. For
example, the system may have a communication layer to
intercept messages from components and then route the mes-
sages across the network to the device executing the applica-
tion components intended to receive the messages.

During execution, the system may redistribute the applica-
tion components if a performance metric violates a perfor-
mance tolerance. For instance, the system may distribute a
component to another device if the first device has too little
available computing resources. The performance tolerances
may be predefined or defined based on the performance met-
rics collected before or during execution. In various embodi-
ments, the system may create a component distribution pro-
file to reflect the distribution among certain devices, to
facilitate an initial distribution, and to facilitate redistribution
during execution.

In the following discussion, a general description of the
system and its components is provided, followed by a discus-
sion of the operation of the same.

With reference to FIG. 1, shown is a networked environ-
ment 100 according to various embodiments. The networked
environment 100 includes a computing environment 103, and
a client device 106, which are in data communication with
each other via a network 109. The network 109 includes, for
example, the Internet, intranets, extranets, wide area net-
works (WANS), local area networks (LLANs), wired networks,
wireless networks, or other suitable networks, etc., or any
combination of two or more such networks.

The computing environment 103 may comprise, for
example, a server computer or any other system providing
computing capability. Alternatively, the computing environ-
ment 103 may employ a plurality of computing devices that
may be employed that are arranged, for example, in one or
more server banks or computer banks or other arrangements.
Such computing devices may be located in a single installa-
tion or may be distributed among many different geographi-
cal locations. For example, the computing environment 103
may include a plurality of computing devices that together
may comprise a cloud computing resource, a grid computing
resource, and/or any other distributed computing arrange-
ment. In some cases, the computing environment 103 may
correspond to an elastic computing resource where the allot-
ted capacity of processing, network, storage, or other com-
puting-related resources may vary over time.

Various applications and/or other functionality may be
executed in the computing environment 103 according to
various embodiments. Also, various data is stored in a data
store 112 that is accessible to the computing environment
103. The data store 112 may be representative of a plurality of
data stores 112 as can be appreciated. The data stored in the
data store 112, for example, is associated with the operation
of the various applications and/or functional entities
described below.

The components executed on the computing environment
103, for example, include the application distribution system
115, application 118, and other applications, services, pro-
cesses, systems, engines, or functionality not discussed in

US 9,184,979 B2

3

detail herein. The application distribution system 115 is
executed to distribute application components 119 among
devices across a network and to facilitate communication
between the application components 119 as if they are all
executing on the same device. Embodiments of the applica-
tion distribution system 115 may be executed to redistribute
the application components 119 based on certain perfor-
mance metrics that indicate another distribution may be pre-
ferred. In redistributing the application components 119, the
application distribution system 115 may need to capture the
state of execution of the application components prior to
redistribution and then update the components with the state
of execution upon redistributing them among devices.

Various embodiments of the application distribution sys-
tem 115 may facilitate communication across a network
between the application components 119 distributed on vari-
ous computing devices without modifying the components
themselves with the location of other components. Thus, the
application components 119 may continue to communicate as
if being executed on one device. Communication may be
structured by component interfaces 120 wrapped around the
components. The component interface 120 intercepts com-
munication calls or other messages from application compo-
nents 119. Once intercepted, the component interface 120
includes the messages in component interface packets that
may be retrieved and decoded by application components 119
from a network stream regardless of which device is currently
executing the application components 119.

An application 118 is executed in the computing environ-
ment 103 and/or the client 108 by the application distribution
system 115 distributing components 119 between the com-
puting devices. An application component 119 may be any
division of an application. For example, an application com-
ponent may be a data structure in a library, a method, an
object, a function, an externally identified division of the
application, or any other part of an application. The applica-
tion components 119 may be simultaneously executed on
many devices, distributed to one device, or any combination
thereof. For example, in a photo editor application 118, user
input application components 119 may be executed on the
client 108 while processor-intense application components
119 may be executed on devices in the computing environ-
ment 103. In various embodiments, the application distribu-
tion system 115 may distribute the same processor-intense
application component 119 to many devices for execution to
ensure the fastest available device executes the application
component 119.

The data stored in the data store 112 includes, for example,
applications 121, and potentially other data. Applications 121
may include data related to applications executed on devices.
For example, application 121 data may include data related to
application components 124. Application component 124
may include data related to its execution. For example, a
device 127 may have been preidentified as capable of execut-
ing the application component. A device 127 may be a server
computer or any other system providing computing ability.

Another example of data related to an application compo-
nent 124 is performance metrics 131. Performance metrics
131 include any data related to executing application compo-
nents 124. Performance metrics may include, for example, an
elapsed time of execution for the application component, a
computing device metric, such as an availability of comput-
ing operations in the device executing the application com-
ponent 119, a processor execution time clocked while execut-
ing the application component 119, a memory usage while
executing the application component 119, number of compo-
nent operations consumed when executing the application

10

15

20

25

30

35

40

45

50

55

60

65

4

component, or any other data relevant to measuring the per-
formance of a computing device or the execution of the appli-
cation component 119.

An additional example of data related to an application
component 124 is performance tolerances 134. Performance
tolerances 134 may be predefined and stored in the data store
112 or they may be heuristically determined based on execu-
tion of the application component 124. Performance toler-
ances may be, for example, a maximum elapsed time of
execution for the application component, a minimum avail-
ability of computing operations for the device executing the
application component 119, a maximum processor execution
time clocked while executing the application component 119,
a minimum memory usage while executing the application
component 119, or any other data relevant to evaluating the
performance of a computing device or the application com-
ponent 119. As illustrated by the examples of performance
tolerances 134 and examples of performance metrics 131, the
application distribution system 115 may compare the perfor-
mance tolerances 134 to respective performance metrics 131
for the application distribution system 115 to know when to
redistribute the application components 119 among devices,
as will be explained in more detail during discussion of FIG.
3A below.

Application 121 data may also include a component distri-
bution profile 137. The component distribution profile 136
may include any data related to the distribution of application
components 119 among devices. For example, the component
distribution profile 136 may include data related to when the
application distribution system 115 redistributes the applica-
tion components 124 to other respective devices 127. Addi-
tional examples involve component distribution profile 137
data concerning an initial or default distribution of the appli-
cation components 124. This initial distribution may have
been predetermined, for example, based on performance met-
rics 131 or some other indication of how to initially distribute
application components 124 obtained from past execution of
the application 118.

The client 106 is representative of a plurality of client
devices that may be coupled to the network 109. The client
106 may comprise, for example, a processor-based system
such as a computer system. Such a computer system may be
embodied in the form of a desktop computer, a laptop com-
puter, personal digital assistants, cellular telephones, smart-
phones, set-top boxes, music players, web pads, tablet com-
puter systems, game consoles, electronic book readers, or
other devices with like capability. The client 106 may include
a display 144. The display 144 may comprise, for example,
one or more devices such as liquid crystal display (LCD)
displays, gas plasma-based flat panel displays, organic light
emitting diode (OLED) displays, LCD projectors, or other
types of display devices, etc.

The client 106 may be configured to execute various appli-
cations such as a client application 141 and/or other applica-
tions. The client application 141 may be executed in a client
106, for example, to access network content served up by the
computing environment 103 and/or other servers, thereby
rendering a user interface 147 on the display 144. To this end,
the client application 141 may comprise, for example, a
browser, a dedicated application, etc., and the user interface
147 may comprise a network page, an application screen, etc.
The client 106 may be configured to execute applications
beyond the client application 141 such as, for example, email
applications, social networking applications, word proces-
sors, spreadsheets, and/or other applications.

The client 108 is representative of a plurality of client
devices that may be coupled to the network 109. The client

US 9,184,979 B2

5

108 may comprise, for example, a processor-based system
such as a computer system. Such a computer system may be
embodied in the form of a desktop computer, a laptop com-
puter, personal digital assistants, cellular telephones, smart-
phones, set-top boxes, music players, web pads, tablet com-
puter systems, game consoles, electronic book readers, or
other devices with like capability. The client 108 may include
a display 151. The display 144 may comprise, for example,
one or more devices such as liquid crystal display (LCD)
displays, gas plasma-based flat panel displays, organic light
emitting diode (OLED) displays, LCD projectors, or other
types of display devices, etc.

The client 108 may be configured to execute application
components 119 of application 118 as the components are
distributed to the client 108 by the application distribution
system 115. The client application 118 may be executed in a
client 108, for example, to access network content served up
by the computing environment 103 and/or other servers,
thereby rendering a user interface 154 on the display 151. To
this end, the client application 118 may comprise, for
example, a browser, a dedicated application, etc., and the user
interface 154 may comprise a network page, an application
screen, etc. The client 108 may be configured to execute
applications beyond the client application 118 such as, for
example, email applications, social networking applications,
word processors, spreadsheets, and/or other applications.

Next, a general description of the operation of the various
components of the networked environment 100 is provided.
To begin, the application distribution system 115 may obtain
an application 118 for execution. As the application 118 is
developed, a user at a client 106 may identify application
components 119 ofthe application 118 and devices capable of
executing application components 119 through a user inter-
face 147 for an application development client application
141. The application distribution system 115 may then obtain
these external identifications of the application components
119 across the network 109. In various embodiments, the
application distribution system 115 may also/instead identify
application components 119 based on a data structure in a
library, a method, an object, a function, or any other logical
division an application. The application distribution system
115 may store information about the application 118 and
application components 119 in the data store 112 as applica-
tion 121 data and application component 124 data.

The application distribution system 115 may determine a
distribution of the application components 119 across the
computing environment 103 and/or client 108 based on per-
formance metrics 131, the components distribution profile
137, or other indicators of the optimal distribution of compo-
nents. The optimal distribution may be the most efficient use
of computing resources, an externally identified optimal dis-
tribution, or other preferred distribution that meets perfor-
mance tolerances 134. The same component 119 may be
distributed to multiple devices or to one device. In various
embodiments, the application distribution system 115 may
run in the computing environment 103, the client 108, or both,
depending on the needs of the system.

Once the component distribution has been determined, the
application distribution system 115 wraps the components
119 with component interfaces 120. The components 119
may be wrapped individually or in groups of components
119. The application distribution system 115 distributes the
components 115 to their respective client 108 devices and/or
devices in the computing environment 103. The component
interface 120 facilitates operation of the components 119 as if
the application were being executed on a single device with-

10

15

20

25

30

35

40

45

50

55

60

65

6

out modifying the components 119 themselves by intercept-
ing and routing communications between the components
119.

A component 119 attempts to communicate by, for
example, calling another component 119. Because the other
component 119 may have been distributed to another device
and the caller component 119 was not modified to call the
component on the new device, the component interface 120
intercepts the communication. The component interface 120
creates an interface packet that may be routed to the compo-
nent by sending the packet across the network 109 to the
location of the device executing the other component. The
interface packet may include, among other information, the
location of the device executing the other component and the
communication sent from the caller component 119. The
application distribution system 115 includes the location of
devices executing other components 120 in the component
interface 120. The location may be, for example, the network
address of the device executing the component 119 or any
other identifier that facilitates the component interface 120
communicating across a network 109 with other components
119. The application distribution system 115 updates the
component interfaces 120 with new locations when the com-
ponents 119 are redistributed.

The component interfaces 120 further facilitate communi-
cation by listening to network traffic to identify interface
packets containing the location of the device on which the
component interface 120 resides. Once an interface packet
with the respective device’s location is detected, the compo-
nent interface 120 extracts the communication from the
packet and sends it to the proper component 119.

As the components 119 are executed in their respective
devices, the application distribution system 115 collects per-
formance metrics 131. Based on a comparison of the perfor-
mance metrics 131 to performance tolerances 134, the appli-
cation distribution system 115 may redistribute the
components 119. To do so, it must first obtain a current state
of execution of the component 119. It then updates the com-
ponent interfaces 120 based on the new devices appointed to
execute the components so that the component interface 120
may identify the device executing the component 119
intended to receive the communication. After distributing the
components 119, the application distribution system 115 will
notify the components 119 of the current state of execution so
that execution of the components 119 may continue despite
the redistribution of the components 119. During execution,
the component interfaces 120 intercept messages to facilitate
sending the message to the correct device associated with the
component 119. The component interfaces 120 also monitor
network traffic to obtain messages intended for the device on
which the component interface 120 is located.

As a non-limiting example, the application distribution
system 115 may obtain an application 118 executed to edit
pictures on a cell phone client 108. The application 118 may
have many features, such as tagging the picture, adjusting the
brightness of the picture, and sharpening the picture. Each of
these features may comprise many functions to facilitate the
features. For example, the tag feature has an input box func-
tion, a store tag function, and possibly other functions
required to allow the user to tag the picture with keywords.
The brightness feature may have an input bar function for the
user to input the brightness level change, a color analyzer
function that identifies the red, blue, and green channel val-
ues, a color modifier function that adjusts those values, and a
display function that displays the adjusted photograph to the
user. The application distribution system 115 may identify

US 9,184,979 B2

7

each of these functions as an application component 119 or it
may identify even smaller functions as components 119.

Continuing the non-limiting example, to determine an ini-
tial distribution of the components 119 among the client 108
and devices in the computing environment 103, the applica-
tion distribution system 115 may identify that the brightness
change input component 119 and the display component 119
must occur on the client 108 device, so it will distribute those
application components 119 to the client 108 for execution.
But the other application components 119 may be run on
either the client device 108 or in the computing environment
103. The application distribution system 115 may run these
components on both the client and the computing environ-
ment 103 to obtain initial performance metrics 131. Alterna-
tively, the application distribution system 115 may already
have performance metrics 131 and/or a component distribu-
tion profile 137 to facilitate determining a distribution of the
components 119. The application distribution system 115
may distribute the application components 119 to the device
that indicates the lowest processor execution time, for
example. This may be the devices located in the computing
environment 103, so the application distribution system 115
will distribute the color modifier component and color ana-
lyzer component 119 to the computing environment 103 for
execution. One metric for determining distribution may be
network latency. The application distribution system 119 may
distribute components 119 needing immediate resources on
the client 108 to the client 108 because the network latency
renders distributing components 119 to the computing envi-
ronment 103 less than optimal.

To facilitate communication between the input compo-
nents 119 being executed in the client 108 and the compo-
nents 119 being executed in the computing environment 103,
the application distribution system 115 will wrap the appli-
cation components 119 being executed in the client 108 with
acomponent interface 120 that has the network address of the
device or devices in the computing environment 103 execut-
ing the other application components 119. In various embodi-
ments, each application component 119 may have its own
component interface 120 with the network address of the
device executing all other application components 119 or
some other combination of application components 119 may
be wrapped with a component interface 120.

Continuing the non-limiting example, when the user slides
the brightness input application component 119, the compo-
nent interface 120 associated with that component 119 will
intercept the message sent to the color analyzer application
component 119 because that message was sent without
knowledge that the color analyzer application component 119
is not being executed on the client 108. The application dis-
tribution system 115 is aware of this, so it generates a com-
ponent interface packet with the network address of the
device executing the color analyzer component 119 and the
communication sent by the input component 119. The appli-
cation distribution system 115 places the component inter-
face packet into a network stream on the network 109. The
component interface 120 of the color analyzer application
component 119 listens to the network stream and obtains the
packet because it has a network address that matches its
device. The component interface 120 may then extract the
message sent by the brightness input application component
119 and send it to the color analyzer application component
119. Similarly, when the color modifier application compo-
nent 119 sends the modification for the picture to the display
application component 119, the respective component inter-

10

15

20

25

30

35

40

45

50

55

60

65

8

faces 120 will intercept the messages, generate component
interface packets, and extract the message from the compo-
nent interface packets.

Referring next to FIG. 2, shown is one example of a user
interface 154 (F1G. 1), denoted herein as 1544, rendered by a
client application 1885 (FIG. 1), executed in a client 108
(FIG. 1) in the networked environment 100 (FIG. 1). The user
interface 154a includes a network photo editor page 201 that
depicts a picture and functions available for modifying that
picture. The functions for modifying the picture may each be
at least one application component 119 (FIG. 1), denoted
herein as 119a. In various embodiments, the application dis-
tribution system 115 may further divide these functions into
smaller functions for identifying application components 119
oran external identification may have indicated what division
of the photo editor application should be made to identify its
application components 119. The application components
119a may be wholly or in part executed on the client 108
and/or in the computing environment 103 (FIG. 1).

Referring next to FIG. 3A, shown is a flowchart that pro-
vides one example of the operation of a portion of the appli-
cation distribution system 115 according to various embodi-
ments. It is understood that the flowchart of FIG. 3 A provides
merely an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of the portion of the application distribution system 115
as described herein. As an alternative, the flowchart of FIG.
3A may be viewed as depicting an example of steps of a
method implemented in the computing environment 103
(FIG. 1) according to one or more embodiments.

Beginning with box 300, the application distribution sys-
tem 115 evaluates whether distribution of application com-
ponents 124 (FIG. 1) among devices is possible. In various
embodiments, the application distribution 115 may deter-
mine whether distribution of a component 124 to another
device is possible based on external identification in a client
106 (FIG. 1) during application development, a predefined
device 127 (FIG. 1) required for execution, or other indication
of whether the components 119 may operate on multiple
devices or whether the components 119 must execute on a
single device. For example, a display component 119 com-
prising a user interface may be required on a display 151
(FIG. 1) of the client 108 (FIG. 1), but a generation compo-
nent 119 that generates a part of that user interface may be
done in either the client 108 or the computing environment
103.

Movingto box 301, the application distribution system 115
determines an initial distribution of application components
124 (FIG. 1) among devices 127 (FIG. 1). In various embodi-
ments, the application distribution system 115 may distribute
all of the application components 124 on multiple devices.
This may, for example, facilitate obtaining performance met-
rics 131 (FIG. 1). Alternatively, the application distribution
system 115 may distribute the application components 124 to
different devices 127. In various embodiments, the applica-
tion distribution system 115 may determine the distribution
based on a component distribution profile 137 (FIG. 1) stored
in the data store 112 (FIG. 1). For example, the component
distribution profile 137 may identify certain devices 127 asso-
ciated with certain application components 124 previously
identified as an optimal distribution. In various embodiments,
the application distribution system 115 may also or instead
distribute the application components 124 based on perfor-
mance metrics 131 (FIG. 1) stored in the data store 112. For
example, each application component 119 (FIG. 1) may be
associated with a device based on a performance metric 131
within a predefined performance tolerance 134.

US 9,184,979 B2

9

Continuing with box 301, application components 119
may represent any division of an application 118. For
example, an application component 119 may be a data struc-
ture in a library, a subroutine, an object, a function, or some
other division of an application 118. In various embodiments,
application components 119 may be identified externally
through a user interface 147 (FIG. 1) on a client 106.

Inbox 304, the application distribution system 115 applies
component interfaces 120 to the application components 119
to facilitate communications. These may be applied to each
application component 119 or to groups of application com-
ponents 124. For example, the component interface 120 may
be applied to all application components 119 on a device, or
to some other group. The component interface 120 will be
discussed more in connection with FIGS. 3B and 3C.

Inbox 307, the application distribution system 115 distrib-
utes the application components 119 among devices across a
network and begins execution of the application components
119. The application distribution system 115 distributes a
component by sending the component 119 and its interface
120 to a respective device for execution.

In box 311, the application distribution system 115 evalu-
ates whether a collected performance metric 131 (FIG. 1) has
violated a performance tolerance 134 (FIG. 1). If the perfor-
mance metric 131 does not violate a respective performance
tolerance 134, then the application distribution system 115
continues to box 326. A performance tolerance 134 sets either
amaximum or a minimum value for a respective performance
metric 131. The performance tolerances 134 may be pre-
defined and/or set by the application distribution system 115
based on current operating conditions. On example of a per-
formance metric 131 may be an elapsed time of execution.
The elapsed time of execution may be defined as the time
spent executing the application component 119. The respec-
tive performance tolerance 134 may set a maximum elapsed
time of execution above which the tolerance would be vio-
lated since above the maximum would not be an optimal
distribution. The maximum elapsed time of execution may be
a value above the elapsed time of execution previously
recorded in another device or some other definition that indi-
cates another device may be more optimal.

Continuing with box 311, another example of a perfor-
mance metric 131 may be an availability of computing
resources. The respective performance tolerance 131 may be
a minimum availability of computing resources below which
the tolerance would be violates since there may not be suffi-
cient computing resources on that device to execute the appli-
cation component 119. Thus, the application distribution sys-
tem 115 may distribute the application component 119 to
another device that has more computing resources available.

Continuing with box 311, an example of a performance
metric 131 may be the processor execution time. The respec-
tive performance tolerance 131 may be a maximum processor
execution time used by the application component 119 above
which the application distribution system 115 may distribute
the component to another device. The maximum processor
execution time may have been defined based on a lower
processor execution time in another device or some other
indication the processor execution time would be more opti-
mal in another device.

Continuing with box 311, an example of a performance
metric 131 may be the memory usage of the application
component 119 in the device. The respective performance
tolerance 131 may be a maximum memory usage above
which the application distribution system 115 may distribute
the component to another device. The maximum memory
usage may have been defined based on a lower memory usage

10

15

20

25

30

40

45

50

55

60

65

10

by the application component 119 in another device or some
other indication that the memory usage would be more opti-
mal in another device.

In box 314, the application distribution system 115 obtains
the current state of execution. This facilitates, for example,
capturing the point in application prior to redistributing the
application components 119 since once an application com-
ponent is sent to a new device for execution, it will need to be
able to continue execution as if it had not been redistributed.

In box 315, the application distribution system 115 deter-
mines a new distribution of the application components 119.
This may be done similarly to determining an initial distribu-
tion in box 301. In various embodiments, the application
distribution system 115 may determine the distribution based
on a component distribution profile 137 (FIG. 1) stored in the
data store 112 (FIG. 1). For example, the component distri-
bution profile 137 may identify certain devices 127 associated
with certain application components 124 previously identi-
fied as an optimal distribution. In various embodiments, the
application distribution system 115 may also or instead dis-
tribute the application components 119 based on performance
metrics 131 (FIG. 1) stored in the data store 112. For example,
each application component 119 may be associated with a
device 127 based on a performance metric 131 within a pre-
defined performance tolerance 134. Network latency may
also be taken into account when distributing application com-
ponents 119.

Inbox 317, the application distribution system 115 updates
the component interfaces for the application components 119
with the network addresses of the new devices executing the
application components 119.

In box 321, the application distribution system 115
migrates the application components 115 to the devices iden-
tified in determining the new distribution in box 315. In box
324, the application distribution system 115 updates the com-
ponents with the current state of execution so that the appli-
cation 118 may continue to operate as if no distribution had
occurred.

Inbox 326, the application distribution system 115 updates
the component distribution profile 137 with the new perfor-
mance metrics 131 collected in box 311 and other data useful
for determining a distribution of application components 119.

In box 327, the application distribution system 115 evalu-
ates whether execution is complete. If it is not, it returns to
box 311. Ifit is, this portion of application distribution system
115 ends.

Referring next to FIG. 3B, shown is a flowchart that pro-
vides one example of the operation of a portion of the com-
ponent interface 120 according to various embodiments. It is
understood that the flowchart of FIG. 3B provides merely an
example of the many different types of functional arrange-
ments that may be employed to implement the operation of
the portion of the component interface 120 as described
herein. As an alternative, the flowchart of FIG. 3B may be
viewed as depicting an example of steps of a method imple-
mented in the computing environment 103 (FIG. 1) according
to one or more embodiments.

Beginning with box 334, the component interface 120
intercepts a communication from a first application compo-
nent 119 (FIG. 1) intended for a second application compo-
nent 119. The communication may be, for example, a mes-
sage, a request for an output, or other interface with another
application component 119.

In box 337, the component interface 120 identifies a net-
work location of a device associated with the application
component 119. There may be many devices currently
executing the application component 119. In this instance,

US 9,184,979 B2

11

component interface 120 may identify the location of'a device
executing the application component 119 that has the best
performance metric 131 and/or it may identify many of the
devices executing the application component 119. The net-
work location may be, for example, a network address, an
internet protocol address, a base address, a media access
control address, and/or other location that identifies how to
send a communication to a device across a network.

In box 341, the component interface 120 generates a com-
ponent interface packet comprising the communication and
network location. The component interface packet may have
any structure that facilitates communication between the
application components 119 even if the application compo-
nents 119 are not being executed on the same device. The
component interface packet may, for example, have a header
with the network location of the second application compo-
nent 119 and a payload that has the communication sent from
the first application component 119.

Inbox 344, the component interface 120 sends the compo-
nent interface packet to the second application component
119. This is done by putting the interface packet into a net-
work stream if the application components are not being
executed on the same device or it sends the component inter-
face packet to the component on the same device if the same
device is being used. Thereafter, this portion of the compo-
nent interface 120 ends.

Referring now to FIG. 3C, shown is a flowchart that pro-
vides one example of the operation of a portion of the com-
ponent interface 120 according to various embodiments. It is
understood that the flowchart of FIG. 3C provides merely an
example of the many different types of functional arrange-
ments that may be employed to implement the operation of
the portion of the component interface 120 as described
herein. As an alternative, the flowchart of FIG. 3C may be
viewed as depicting an example of steps of a method imple-
mented in the computing environment 103 (FIG. 1) according
to one or more embodiments.

Beginning with box 364, the component interface 120
obtains a component interface packet from the network 109
(FIG.1).Inbox 367, the component interface 120 extracts the
device network location from the component interface
packet. In box 371, the component interface 120 evaluates
whether the network location indicates that the component
interface packet was intended for this device. This may be
done, for example, by comparing the network location to a
location associated with the device. For instance, if the net-
work location is an internet protocol address, the component
interface 120 will compare it to the internet protocol address
of the respective device. If the network location does not
match, then the component interface 120 continues to box
377.

In box 371, the component interface 120 extracts the pay-
load from the component interface packet and sends it to the
application component 119. The payload may be, for
example, a communication from another application compo-
nent 119.

Inbox 377, the component interface 120 evaluates whether
execution is complete. If it is not, the application distribution
system 115 returns to box 364. If it is complete, thereafter this
portion of the component interface 120 ends.

With reference to FIG. 4, shown is a schematic block
diagram of the computing environment 103 according to an
embodiment of the present disclosure. The computing envi-
ronment 103 includes one or more computing devices 400.
Each computing device 400 includes at least one processor
circuit, for example, having a processor 403 and a memory
406, both of which are coupled to alocal interface 409. To this

10

15

20

25

30

35

40

45

50

55

60

65

12

end, each computing device 400 may comprise, for example,
atleast one server computer or like device. The local interface
409 may comprise, for example, a data bus with an accom-
panying address/control bus or other bus structure as can be
appreciated.

Stored in the memory 406 are both data and several com-
ponents that are executable by the processor 403. In particu-
lar, stored in the memory 406 and executable by the processor
403 are application distribution system 115, and potentially
other applications. Also stored in the memory 406 may be a
data store 112 and other data. In addition, an operating system
may be stored in the memory 406 and executable by the
processor 403.

Itisunderstood that there may be other applications that are
stored in the memory 406 and are executable by the processor
403 as can be appreciated. Where any component discussed
herein is implemented in the form of software, any one of a
number of programming languages may be employed such
as, for example, C, C++, C#, Objective C, Java®, JavaS-
cript®, Perl, PHP, Visual Basic®, Python®, Ruby, Flash®, or
other programming languages.

A number of software components are stored in the
memory 406 and are executable by the processor 403. In this
respect, the term “executable” means a program file that is in
a form that can ultimately be run by the processor 403.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code in
aformatthat can beloaded into a random access portion of the
memory 406 and run by the processor 403, source code that
may be expressed in proper format such as object code that is
capable of being loaded into a random access portion of the
memory 406 and executed by the processor 403, or source
code that may be interpreted by another executable program
to generate instructions in a random access portion of the
memory 406 to be executed by the processor 403, etc. An
executable program may be stored in any portion or compo-
nent of the memory 406 including, for example, random
access memory (RAM), read-only memory (ROM), hard
drive, solid-state drive, USB flash drive, memory card, optical
disc such as compact disc (CD) or digital versatile disc
(DVD), floppy disk, magnetic tape, or other memory compo-
nents.

The memory 406 is defined herein as including both vola-
tile and nonvolatile memory and data storage components.
Volatile components are those that do not retain data values
upon loss of power. Nonvolatile components are those that
retain data upon a loss of power. Thus, the memory 406 may
comprise, for example, random access memory (RAM), read-
only memory (ROM), hard disk drives, solid-state drives,
USB flash drives, memory cards accessed via a memory card
reader, floppy disks accessed via an associated floppy disk
drive, optical discs accessed via an optical disc drive, mag-
netic tapes accessed via an appropriate tape drive, and/or
other memory components, or a combination of any two or
more of these memory components. In addition, the RAM
may comprise, for example, static random access memory
(SRAM), dynamic random access memory (DRAM), or mag-
netic random access memory (MRAM) and other such
devices. The ROM may comprise, for example, a program-
mable read-only memory (PROM), an erasable program-
mable read-only memory (EPROM), an electrically erasable
programmable read-only memory (EEPROM), or other like
memory device.

Also, the processor 403 may represent multiple processors
403 and/or multiple processor cores and the memory 406 may
represent multiple memories 406 that operate in parallel pro-
cessing circuits, respectively. In such a case, the local inter-

US 9,184,979 B2

13

face 409 may be an appropriate network that facilitates com-
munication between any two of the multiple processors 403,
between any processor 403 and any of the memories 406, or
between any two ofthe memories 406, etc. The local interface
409 may comprise additional systems designed to coordinate
this communication, including, for example, performing load
balancing. The processor 403 may be of electrical or of some
other available construction.

Although application distribution system 115, and other
various systems described herein, may be embodied in soft-
ware or code executed by general purpose hardware as dis-
cussed above, as an alternative the same may also be embod-
ied in dedicated hardware or a combination of software/
general purpose hardware and dedicated hardware. If
embodied in dedicated hardware, each can be implemented as
a circuit or state machine that employs any one of or a com-
bination of a number of technologies. These technologies
may include, but are not limited to, discrete logic circuits
having logic gates for implementing various logic functions
upon an application of one or more data signals, application
specific integrated circuits (ASICs) having appropriate logic
gates, field-programmable gate arrays (FPGAs), or other
components, etc. Such technologies are generally well known
by those skilled in the art and, consequently, are not described
in detail herein.

The flowcharts of FIGS. 3A-3C show the functionality and
operation of an implementation of portions of the application
distribution system 115. If embodied in software, each block
may represent a module, segment, or portion of code that
comprises program instructions to implement the specified
logical function(s). The program instructions may be embod-
ied inthe form of source code that comprises human-readable
statements written in a programming language or machine
code that comprises numerical instructions recognizable by a
suitable execution system such as a processor 403 in a com-
puter system or other system. The machine code may be
converted from the source code, etc. If embodied in hardware,
each block may represent a circuit or a number of intercon-
nected circuits to implement the specified logical function(s).

Although the flowcharts of FIGS. 3A-3C show a specific
order of execution, it is understood that the order of execution
may differ from that which is depicted. For example, the order
of'execution of two or more blocks may be scrambled relative
to the order shown. Also, two or more blocks shown in suc-
cessionin FIG. 3 may be executed concurrently or with partial
concurrence. Further, in some embodiments, one or more of
the blocks shown in FIG. 3 may be skipped or omitted. In
addition, any number of counters, state variables, warning
semaphores, or messages might be added to the logical flow
described herein, for purposes of enhanced utility, account-
ing, performance measurement, or providing troubleshooting
aids, etc. It is understood that all such variations are within the
scope of the present disclosure.

Also, any logic or application described herein, including
the application distribution system 115, that comprises soft-
ware or code can be embodied in any non-transitory com-
puter-readable medium for use by or in connection with an
instruction execution system such as, for example, a proces-
sor 403 in a computer system or other system. In this sense,
the logic may comprise, for example, statements including
instructions and declarations that can be fetched from the
computer-readable medium and executed by the instruction
execution system. In the context of the present disclosure, a
“computer-readable medium” can be any medium that can
contain, store, or maintain the logic or application described
herein for use by or in connection with the instruction execu-
tion system.

20

25

30

40

45

60

14

The computer-readable medium can comprise any one of
many physical media such as, for example, magnetic, optical,
or semiconductor media. More specific examples of a suitable
computer-readable medium would include, but are not lim-
ited to, magnetic tapes, magnetic floppy diskettes, magnetic
hard drives, memory cards, solid-state drives, USB flash
drives, or optical discs. Also, the computer-readable medium
may be a random access memory (RAM) including, for
example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic ran-
dom access memory (MRAM). In addition, the computer-
readable medium may be a read-only memory (ROM), a
programmable read-only memory (PROM), an erasable pro-
grammable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible examples
of implementations set forth for a clear understanding of the
principles of the disclosure. Many variations and modifica-
tions may be made to the above-described embodiment(s)
without departing substantially from the spirit and principles
of the disclosure. All such modifications and variations are
intended to be included herein within the scope of this dis-
closure and protected by the following claims.

Therefore, the following is claimed:

1. A non-transitory computer-readable medium embody-
ing a program executable in at least one computing device,
comprising:

code that intercepts a first communication from a first

component of an application executing on a server com-
puting device to a second component of the application
executing on a client computing device, wherein the first
component and the second component of the application
are extracted from a version of the application config-
ured to execute on a single computing device;

code that determines that a function requested in the first

communication is provided by the second component of
the application;

code that generates a first packet based at least in part on a

destination of the first communication and a payload of
the first communication;

code that sends the first packet to the client computing

device;

code that obtains a second packet from the network,

wherein the second packet is received from the second
component;

code that extracts a second communication from the sec-

ond packet; and

code that sends the second communication to the first com-

ponent.

2. The non-transitory computer-readable medium of claim
1, wherein at least one of the first component or the second
component comprises at least one of a data structure in a
library, a subroutine, a function, or an externally identified
component.

3. The non-transitory computer-readable medium of claim
1, wherein the second communication comprises a call to a
function of the first component.

4. A system, comprising:

at least one computing device; and

a first application executable in the at least one computing

device, the first application comprising:

logic that intercepts a communication from a first com-
ponent of a second application to a second component
of the second application, wherein the first compo-
nent of the second application and the second com-

US 9,184,979 B2

15

ponent of the second application are extracted from a
version of the second application configured to
execute on a single computing device;

logic that determines that a function requested in the
communication is provided by the second component
of the second application;

logic that generates a packet based at least in part on a
location of the second component of the second appli-
cation within a network environment and the inter-
cepted communication; and

logic that forwards the packet to the second component
of the second application.

5. The system of claim 4, wherein the at least one comput-
ing device comprises a first computing device and the first
application further comprises logic that identifies a network
address for the location of a second computing device execut-
ing the second component of the second application.

6. The system of claim 4, wherein the packet comprises a
function call for a function provided by the second compo-
nent.

7. The system of claim 4, wherein at least one of the first
component or the second component comprises a data struc-
ture in a library.

8. The system of claim 4, wherein at least one of the first
component or the second component comprises a subroutine.

9. The system of claim 4, wherein at least one of the first
component or the second component comprises a function.

10. The system of claim 4, wherein at least one of the first
component or the second component comprises an externally
identified component.

11. The system of claim 4, wherein the communication
comprises a first communication, the packet comprises a first
packet, and the first application further comprises:

logic that obtains a second packet from the network envi-

ronment, wherein the second packet is received from the
second component of the second application;

logic that extracts a second communication from the sec-

ond packet; and

logic that sends the second communication to the first

component of the second application.

12. The system of claim 4, wherein the packet comprises at
least one value to be passed to the function provided by the
second component of the second application.

13. A method, comprising:

intercepting, in a first computing device, a first communi-

cation from a first component of an application execut-
ing on the first computing device to a second component

10

20

25

30

35

40

45

16

of the application executing on a second computing
device, wherein the first component and the second com-
ponent of the application are extracted from a version of
the application configured to execute on a single com-
puting device;

determining, in the first computing device, that a function

requested in the first communication is provided by the
second component of the application;

generating, in the first computing device, a first packet

based at least in part on a destination of the first com-
munication and a first payload of the first communica-
tion;

sending, via the first computing device, the first packet to

the second computing device;

obtaining, in the first computing device, a second packet

from a network, wherein the second packet is sent from
the second component;

extracting, in the first computing device, a second payload

from the second packet; and

providing, in the first computing device, the second pay-

load to first component of the application.

14. The method of claim 13, wherein the first payload
comprises a message from the first component of the appli-
cation to the second component of the application.

15. The method of claim 13, wherein the first payload
comprises a function call from the first component of the
application for a function provided by the second component
of the application.

16. The method of claim 13, wherein at least one of the first
component or the second component comprises a data struc-
ture in a software library.

17. The method of claim 13, wherein at least one of the first
component or the second component comprises a subroutine.

18. The method of claim 13, wherein at least one of the first
component or the second component comprises a function.

19. The method of claim 13, wherein at least one of the first
component or the second component comprises an externally
identified division of the application.

20. The method of claim 13, further comprising:

analyzing, in the first computing device, the application to

identify a plurality of components; and

splitting, in the first computing device, the application into

the plurality of components, wherein the plurality of
components comprises the first component and the sec-
ond components.

#* #* #* #* #*

